Vježba 4: Prikaz računalne mreže s usmjernikom i preklopnicima

Leon Kosty I Mihael Kurspahić

3.c

Priprema za vježbu

1. Što je usmjernik?

Mrežni uređaj na mrežnom sloju koji povezuje više različitih mreža.

2. Koji su zadaci usmjernika na mrežnom sloju?

Usmjeravanje podataka: Određuju najbolju putanju za prijenos paketa na temelju informacija o mreži i protokola usmjeravanja.

Povezivanje mreža: Omogućuju komunikaciju između različitih mreža.

Prijenos podataka: Prosljeđuju pakete s jednog odredišta na drugo, koristeći IP adrese za identifikaciju odredišta.

Administracija prometa: Mogu implementirati politike kontrole prometa, kao što su QoS (Quality of Service) postavke, kako bi osigurali prioritet važnijim podacima.

Sigurnost: Mnogi usmjernici imaju ugrađene vatrozide ili druge sigurnosne mehanizme za zaštitu mreže od neovlaštenog pristupa.

Mrežna agregacija: Mogu povezivati više povezanih mreža i agregirati promet iz tih mreža.

Vježba

1. Pridružite adrese uređajima tako da stvorite dvije nezavisne mreže oko preklopnika 0 i preklopnika Ispišite zadane adrese pregledno u tablici (za računala i usmjernike).

Uređaj	Sučelje	IP adresa	Mrežna maska
PC1	FastEthernet0	192.168.0.1	255.255.255.0
PC2	FastEthernet0	192.168.0.2	255.255.255.0
PC3	FastEthernet0	192.168.1.1	255.255.255.0
PC4	FastEthernet0	192.168.1.2	255.255.255.0
R1_1	FastEthernet0	192.168.0.10	255.255.255.0
R1_2	FastEthernet0	192.168.1.10	255.255.255.0

2. Usmjernik spojite na mreže tako da svaka mreža bude na drugom sučelju (koristi drugu adresu). Sve adrese trebaju biti u klasi C.

3. Ako već nije uključen, uključite u programu prikaz oznaka sučelja.

4. Prema potrebi, FastEthernet sučelja dodaju se u prozoru Physical, pri čemu je prije dodavanja sučelja potrebno isključiti I/O sklopku za napajanje uređaja.

5. U izborniku Modules može se pronaći sučelja za Ethernet mrežu. Dopunite tablicu

Oznaka	Označava
CE	Sučelje za bakreni Ethernet kabel
CFE	Sučelje za FastEthernet (Copper)
CGE	Sučelje za Gigabit Ethernet (Copper)
FFE	Sučelje za FastEthernet (Fiber)
FGE	Sučelje za Gigabit Ethernet (Fiber)

6. Na slici ispišite IP adrese računalnih mreža i mrežne maske. Pomoću dijaloga Palette vizualno odvojite mreže bojama.

7. U IP Configuration sučelju računala ispravno upišite zadane pristupnike.

8. Ispitajte povezanost u računalnoj mreži pomoću dijagnostičkog alata ping. Koristite naredbu ping na dva načina, ovisno o tome je li izvor poruke računalo ili usmjernik (ako je usmjernik naredba se izvodi iz CLI sučelja). Zabilježite rezultat.

```
C:\>ping 192.168.1.1
Pinging 192.168.1.1 with 32 bytes of data:
Reply from 192.168.1.1: bytes=32 time<1ms TTL=127
Reply from 192.168.1.1: bytes=32 time<1ms TTL=127
Reply from 192.168.1.1: bytes=32 time=3ms TTL=127
Reply from 192.168.1.1: bytes=32 time<1ms TTL=127
Ping statistics for 192.168.1.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms, Maximum = 3ms, Average = Oms
C:\>ping 192.168.1.10
Pinging 192.168.1.10 with 32 bytes of data:
Reply from 192.168.1.10: bytes=32 time<1ms TTL=255
Ping statistics for 192.168.1.10:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms, Maximum = Oms, Average = Oms
```

Router>ping 192.168.1.2

Type escape sequence to abort. Sending 5, 100-byte ICMP Echos to 192.168.1.2, timeout is 2 seconds: .!!!! Success rate is 80 percent (4/5), round-trip min/avg/max = 2/2/3 ms